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he term structure of interest rates
(also known as the yield curve) plays
a central role—both theoretically and
practically—in the economy. The
Federal Open Market Committee
(FOMCO) conducts monetary policy by
targeting interest rates at the short end of the yield
curve. Longer-term yields reflect expectations of
future changes in the funds rate by the FOMC. When
the expectations about the FOMC’s future funds rate
moves change, the yield curve reacts as market
participants reprice bonds to reflect these changes.
In addition, longer-term yields reflect risk premia
and convexity premia. (The convexity premia exist
because bond yields depend on bond prices in a
nonlinear way.) Consequently, the movement of
longer-term yields reflects not only changes in expec-
tations but also changes in these other forces.

In an earlier Economic Review article, Fisher
(2001a), I examined these forces in the context of an
extremely simple model in which all uncertainty was
resolved by the single flip of a coin. Notwithstanding
its simplicity, the model allowed me to present those
ideas in an internally consistent way that provided a
first view of the issues involved. This article is in
some ways a sequel to Fisher (2001a). In the model
presented here, some uncertainty is resolved each
period, but additional uncertainty about future peri-
ods always remains. This article thus represents a big
step in terms of the complexity of the analysis.

A model of the term structure is nothing more or
less than a model of asset prices specialized to zero-
coupon bonds. The central paradigm is this: Assets
make payouts in the uncertain future. It is useful to
think of the payouts as contingent on future states
of the world in which the price of one dollar in each
state of the world (that is, the state prices) is given.
The value of an asset is the sum of the values of the
state-contingent payouts:

(1) asset value= 2 payout, xstate price,

seS
=2 payout,
seS
state price,

x(state-price deflator, X probability, )
= Z(payouts x state- price deflator,)

seS

deflated payout,
xprobability,

where S is the set of states of the world at all future
times. As indicated in equation (1), the state-price
deflator equals the state price divided by the proba-
bility of the state; in other words, it is the value of a
unit payout in a given state conditional on the occur-
rence of the state. The state-price deflator can be
thought of as a stochastic process that evolves
through time. The dynamics of the state-price defla-
tor are intimately related to the interest rate and the
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price of risk, the two components of the price system
(for asset pricing). The interest rate characterizes the
expected change in the state prices while the price of
risk characterizes the volatility of state prices.

Equation (1) reveals the relation between the
absence of arbitrage opportunities and the exis-
tence of the state-price deflator. An arbitrage is a
trading strategy that produces something for noth-
ing. It can be shown that if all state prices are posi-
tive, then there are no arbitrage opportunities.
Since the probabilities of the states are all positive
(by definition), the absence of arbitrage opportuni-
ties implies the existence of a (strictly positive)
state-price deflator.

The solution to the model of the term structure
presented here illustrates a number of impor-

tant features present to one extent or another
in essentially all term structure models.

In a finance model of asset prices, there is no need
to go any deeper. Indeed, the article will set up, solve,
and calibrate a model of the term structure without
any knowledge of, for example, how the nominal
interest is related to expected inflation or how bond
risk premia are related to investors’ attitudes toward
risk. Nevertheless, looking beneath the hood to see
the connections can be informative. Therefore,
Appendix A presents an economics model of asset
prices in which the state-price deflator for real divi-
dends (measured in units of consumption) can be
identified with the marginal utility of a representative
agent. The state-price deflator for nominal dividends
can be immediately derived with the introduction of
the price level (the price of consumption in terms of
dollars). The dynamics of the two state-price defla-
tors reveal the relationship between the real and
nominal interest rates, a relationship that explicitly
includes expected inflation and the agent’s prefer-
ences (including risk aversion).

The purpose of this article is to show how to
use absence-of-arbitrage conditions to solve for the
term structure of interest rates in a discrete-time
setting and to do so in a way that is largely inde-
pendent of the time step. The contribution of this
article is the exposition; the article presents no new
results from the literature. Elsewhere one may find
discrete-time models of asset pricing and the term

structure that are essentially the same as the one
presented here. The current exposition features
two main novelties. First, as alluded to above, this
article focuses on modeling the dynamics of the
state-price deflator.! Second, the model keeps track
of the length of the discrete time period. This step
complicates the notation a bit, but it has a distinct
advantage: By keeping track of the size of the time
step, one can see what happens as it becomes arbi-
trarily small. Consequently, one can see what many
of the continuous-time limits look like. In other
words, this article provides a bridge from discrete-
time models to continuous-time models without
requiring the technical overhead necessary to
directly perform a continuous-time analysis.?

Randomness and uncertainty play a central role
in modeling the term structure, and the proper
vocabulary is required to treat the subject cogently.
The reader is assumed to be familiar with the
notions of expectation, mean, variance, and covari-
ance. The article will deal extensively with normal
and lognormal random variables. Lognormality
plays a very important role in the analysis. The
important properties of lognormal random variables
are outlined in Appendix B.

Knowledge of calculus is not required to follow
the main argument. Calculus is referred to explic-
itly only in the footnotes; it is used implicitly in
approximations.

Finally, the reader should be prepared to become
familiar with a certain amount of notation, which is
unavoidable when discussing the term structure of
interest rates. Equation (6) exemplifies the nota-
tional complexity involved. A fairly comprehensive
list of notations is presented in Table 1.

Bond Prices and Yields
discrete time model is adopted in which obser-
vations are made at discrete points in time. Time
is measured in years. The step size, denoted £, is the
length of time between observations (also referred to
as the length of the period). For example, if 7 = 1/12
then the step size corresponds to one month.

Bond prices. Default-free zero-coupon bonds
are the building blocks for the term structure of
interest rates. A zero-coupon bond pays $1 when it
matures at time 7. Let ¢ denote the current time.
Assume t ” T. The bond’s maturity (measured in
years) is T = T — t. By contrast, the number of steps
until the bond matures is given by 7 = t/A. For exam-
ple,if 1 = T —t = 2, the bond has a maturity of two
years. If, in addition, 7 = 1/12, the bond will mature
after t/h = 24 steps of time. Upon occasion, we will
imagine the step size & getting smaller and smaller
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Notation

h the step size (i.e., length of a time step)

T remaining time until maturity of a bond: 1 =T -1t

p, T) price at time t of a (zero-coupon) bond that matures at time 7'
w, 7 expected return at time ¢ of holding a bond that matures at time T’
y(@, T) yield at time ¢ of a bond that matures at time 7'

7(t) one-period risk-free interest rate at time ¢ (nominal)

S, forward rate at time ¢ for a loan from time T'—h to T’

(1) value of an asset at time ¢

al) rate of dividend flow at time ¢

() state-price deflator at time ¢

K, speed of mean reversion for the interest rate

0, long-run mean of the interest rate

o, interest rate volatility

e(l) interest rate shock

A price of risk (nominal)

o, T) relative volatility at time ¢ of a bond that matures at time 7'

& a combination of parameters: § = k6, — Ac,

o, term premium for forward rates at maturity t

D term premium for zero-coupon yields at maturity ©

while holding both ¢ and T fixed. In such a case, the
number of steps until maturity will increase.

Let p(¢, T') denote the value at time ¢ of a bond
that matures at time 7. When the bond matures (at
time 77) it will be worth its face value: p(7,T) = 1.4
The discount function shows the relation between
bond prices and maturity at a fixed point in time; it
is obtained by plotting p(¢, t + t) versus 1 for fixed
t and T = 0. See Figure 1 for the discount function
computed from bond prices on July 29, 1994.

Zero-coupon yields and forward rates. It is
natural to express bond prices in terms of their
implied yields. The yield to maturity on a zero-

The yield to maturity is also known as the zero-
coupon yield, or zero-coupon rate, or simply the
yield. The yield is the continuously compounded
annualized return that would be earned from hold-
ing the bond until maturity.? The yield curve shows
the relation between yields and maturity at a fixed
point in time; it is obtained by plotting ¥y (¢, ¢ + 1)
versus T for fixed ¢ and Tt > h. See Figure 2 for the
yield curve computed from bond prices on July 29,
1994.% The (short-term, risk-free) interest rate,
7(1), is the yield on a one-period bond:

@) r@®) =y, t+h)=-loglp(,t+Rn))h.

coupon bond (that has not yet matured) is defined as
Let me emphasize that, for many purposes, bond

y(@, T):=-loglp(t, M/ (T -1t). yields should be thought of simply as a way of

1. See Cochrane (2001) for a good example of a more standard approach to discrete-time asset pricing. Cochrane treats the sto-
chastic discount factor as the central object of analysis. In fact, he treats the state-price deflator (which he calls the state-
price density) as a synonym for the stochastic discount factor. Indeed, there is little point in distinguishing between the two
in a setting in which the length of the period is always unity. However, for scenarios in which the length of the time step
becomes shorter and shorter, the state-price deflator has a useful limit while the stochastic discount factor does not.

2. For an introduction to no-arbitrage conditions and modeling the term structure, consult Fisher (2001a); the companion work-
ing paper (Fisher 2001b) contains additional material in Part 2. For introductions to asset pricing in continuous time, see
Baxter and Rennie (1996) and Neftci (1996). For a more advanced treatment, see Duffie (1996).

. Additional notation used in Appendix A is shown in the appendix table.

. If the bond were subject to default risk, then it might not be worth $1 when it matured.

. See Fisher (2001a) for a discussion of continuous compounding and its relation to simple compounding,.

. Yield curves reported in the press are typically drawn using the yields on coupon bonds. Consequently, they do not display
the characteristic downward curvature evident at the long end of the yield curve in Figure 2.
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expressing bond prices. If a bond’s price is known,
its yield can be computed; conversely, if a bond’s
yield is known, its price can be computed. The rela-
tion between the two is p(¢, T) = e T-Dv . T)

The forward rate is defined as’

(3) f(t,T) - _(log[p(t,T)] — log[p(t,T_h)]j.

h

The forward rate is the yield that one can obtain at
time ¢ for a commitment to lend from time 7' — A to
time 7.8 Forward rates are closely related to zero-
coupon yields. In particular, the zero-coupon yield
y(t, T) can be expressed as the average of the for-
ward rates from f(¢, t + k) to f(t, T):°

(T-t)h

>, s t+ik)h.

i=1

@) y.1T) =

(T-0)

As a special case, (&) = f(¢, t + k). The relation
between forward rates and zero-coupon yields can
be inverted; for 7' > t + h, the forward rate f(t, T)
equals the yield y (¢, T) plus a term that depends on
whether the yield curve is rising or falling from
maturity 7' — 7 to maturity 7%:°

) f(z;,T):y(t,T)+(T—z-h)(y(t’T)‘W’T‘h)).

h

In economics terminology, the forward rate is the
marginal yield obtained by extending the maturity
by one period.

Expected return. Thus far, bond prices p(¢, T),
yields y (¢, T, and forward rates f(¢, 7) have all been
considered from the perspective of the current time
t when their values are known for sure. As time
passes from ¢ to ¢t + h, new information arrives and

bond prices, yields, and forward rates will change to
pt+h,T),yt+h,T),and f(t + h, T). When time
t + h arrives, these new values will be known.
However, from the perspective of time ¢, they are
uncertain—they are random variables.

In dealing with random variables, the conditional
expectation operator F [-] is a tool that will be used
repeatedly. Let « be a random variable. Then FE [x]
is the mean of &, where the mean is computed using
all the information available at time (. £ [x] can be
referred to as the expected value of & conditional on
the information available at time ¢.!!

The expectation operator will be used to define
the expected return on a zero-coupon bond over
the next step of time. As time passes from ¢ to ¢ + A,
the price of a given zero-coupon bond changes
from p(t, T) to p(t + h, T).'2 As of time ¢t + h, the
realized return from holding the bond over the
period will be p(t + h, T)/p(t, T). At time ¢, the
price next period (assuming 7" > ¢ + h) is uncer-
tain, and consequently the return is uncertain as
well.’® The expected return is Elp + h, T)/p(Q,
T)]. It is convenient to express the expected
return over the period in terms of continuous
compounding at an annualized rate. Let u(¢, 7)
denote the continuously compounded expected
return at time ¢ on a bond that matures at time 7'
(expressed as an annual rate):

p(t+h,T)
log(Et [719@,7,) D

h

6) nT) =

The term w(¢, 7) will be referred to simply as the
expected return. The expected return plays a cen-
tral role in bond pricing and the term structure (as
will be seen in a later section).!®
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Asset Pricing and the Absence of Arbitrage
his section first discusses asset pricing in gen-
eral and then specializes the results to bond
prices in particular.

The central idea in asset pricing is that the value
of an asset—whether it is a share of stock, a bond,
or a portfolio of other assets—is the present value
of the expected “dividend” payments, where a divi-
dend should be understood to include any sort of
payment, positive or negative. The rate at which
dividends are received is distinguished from the
amount of dividends received. The total amount of
dividends received during the current period is
d(t)h, which equals the dividend rate d () times the
length of the period .

The value of an asset at time ¢, v(¢), equals the
value of the current dividend plus the present value
of expected future dividends:!®

) v(t)=E’t[i[n(t+m))d(t+z’h)h:l,

=\ )

where 1t(¢ + ¢h) is the value of the state-price defla-
tor at time ¢t + k. Equation (7) is a restatement of
equation (1): The dividends correspond to the pay-
outs, the expectations operator E[-] embodies the
probabilities, and the dependence on the states has
been suppressed. In equation (1), the value of the
state-price deflator at time 0 was assumed to be
one; m(0) = 1. From the perspective of time 0, the
value of the asset at time ¢ > 0 is w(¢)v(¢). Dividing
this value by n(¢) produces equation (7).

The state-price deflator plays the central role in
asset pricing and consequently in bond pricing.!”
The state-price deflator is always positive, and it
shrinks over time on average, making the discount
factor less than one. The exposition will show that
the positivity is closely related to the absence of
arbitrage opportunities and that the shrinkage is
closely related to the interest rate.!®

The ratio nt(s)/n(t) for s >t is called the stochas-
tic discount factor. In many discrete-time presen-
tations, it is the stochastic discount factor that is
emphasized (for example, see Cochrane 2001).
However, the state-price deflator is more useful for
the purposes of this exposition because it is better
behaved when the size of the time step is allowed to
g0 to zero.

Absence of arbitrage. Equation (7) not only
represents the value of an asset but also character-
izes the absence of arbitrage opportunities. To
demonstrate this, let us introduce self-financing
trading strategies. A trading strategy involves buy-
ing at time ¢ a portfolio of assets (which could sim-
ply be a single asset) and liquidating the portfolio at
time 7' > {. During the intervening interval, the trad-
ing strategy could involve changing the composition
of the portfolio (buying and/or selling assets); in
addition, the assets in the portfolio could pay divi-
dends or require additional financing (that is, nega-
tive dividends). A trading strategy is self-financing
if the portfolio generates no net cash flows during
the intervening interval. In order to make a trading
strategy self-financing, the investor must (1) reinvest

7. Taking the limit as the step size h goes to zero in equation (3) produces f(t, T) = — a—aTlog[p(t, ).

12.

13.

14.

15.

16.

17.
18.

. Consider the following transaction. At time ¢ buy one bond that matures at time 7". The cost of this bond is, of course, p(t,

T). To pay for this bond, sell some bonds that mature at time 7' — 4. (If you do not already own some of these bonds, you
sell them short.) The number of bonds to be sold is p(¢, T)/p(t, T — k). Your net cash flow at time ¢ is zero. The future cash
flows are as follows. At time T — & pay $1 for every bond sold, while at time 7 receive a payment of $1. Even though these
cash flows are in the future, there is no uncertainty about them at time ¢, and therefore the continuously compounded annu-
alized return on the money invested can be computed at time 7' — % to time T (1/k)log{1/[p(t, TH/p(t, T — h)]} = f(t, T).

. Taking the limit as the step size i goes to zero in equation (4) produces y(t,7) = (1/T —t) fg”f(t,t +5)ds=1/T-1t) fo S, s)ds.
10.
11.

Taking the limit as the step size & goes to zero in equation (5) produces f(t, T) = y(t, T) + (T' - t) a%y(t, 7).

Obviously, if - is known for sure at time ¢, then E,[2] = 2. Moreover, if 2 and y are random variables and ¢ and b are known
at time ¢, then £ [ax + by] = al [x] + OE [y].

Concurrently, the maturity of the bond becomes shorter: A bond with maturity 7'— ¢ = t at time ¢ becomes (after one period
of time) a bond with maturity 77— (t + ») = Tt — h at time ¢ + &.

For a bond with one only one period remaining to maturity (that is, for which 7' = ¢ + %), the price next period is known:
pl+h,T)=p(T,T) =1

The continuously compounded ex post return is log[p(t + h, T)/p(t, T))/h. Note that E {log[p(¢ + i, T)/p(t, T)Vh} = (¢, T)
unless there is no uncertainty. This inequality is an example of what is known as Jensen’s inequality.

The expected return from holding a one-period bond involves no uncertainty. By comparing equations (6) and (2), it can be
seen that the expected return from holding a one-period bond is simply the interest rate; that is, w(¢, ¢t + &) = »(¢).

The existence of a well-defined price in equation (7) depends on the convergence of an infinite sum. If dividends grow too
fast asymptotically relative to the discount factor, the sum will not converge.

See Duffie (1996) for an extensive discussion of the state-price deflator.

Appendix A shows how to compute the state-price deflator from the marginal utility of consumption. In this setting, the
stochastic discount factor is the intertemporal marginal rate of substitution.
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any dividends paid during the intervening interval
in one or more assets, (2) sell assets (or borrow)
to finance any additional required financing, and
(3) finance any change in the composition of the
portfolio in such a way as to generate no net cash
flows at only two points in time: at inception (time ¢)
and at liquidation (time 7).

In equation (7), let v (%) represent the cost of a
self-financing trading strategy at inception. Upon lig-
uidation, the portfolio generated by the self-financing
trading strategy pays a lump-sum dividend equal to
the value of the portfolio: d(T)h = v(T). Equation (7)
becomes, after both sides are multiplied by w(?):

@) n@v®) =E[r(Tv(D)].

Equation (8) embodies the martingale (or random-
walk) property of deflated asset prices (that is, asset
prices multiplied by the state-price deflator). The
martingale property says that the expected deflated
value of any self-financing portfolio equals the cur-
rent deflated value. The martingale property implies
the absence of arbitrage opportunities.

In general, an arbitrage amounts to getting some-
thing for nothing. In this setting, an arbitrage is a self-
financing trading strategy that costs nothing (v(t)
= 0), has no chance of losing money (v(7") = 0 for all
possible outcomes), and has some chance of making
money (v(71) > 0 for some possible outcome).

For a self-financing trading strategy that costs
nothing, equation (8) can be written as

) 0=E[r(Dv(D].

For equation (9) to hold, if there is any chance of
making money (that is, if (7)) > 0 for some possible
outcome), there must also be an offsetting chance
of losing money (that is, v(7) < 0 for some possible
outcome). Therefore, if equation (9) holds, there
are no arbitrage opportunities.!?

Bond pricing. Let us apply (7) to zero-coupon
bonds. Recall that p(¢, T') is the current price (at time
t) of a bond that pays a single unit dividend on the
maturity date, time T’ in other words, v(¢) = p(¢t, T)
and d(T)h = 1.2° Consequently, in this application,
equation (7) becomes

10) p, 1) = E[n(1/r(®)].

In modeling zero-coupon bonds, it is convenient to
have the value of the bond converge to its face value
on its maturity date, so that p(7, T) = 1. Thus, the
value of the bond will be assumed to include the
current dividend on its maturity date.

It is worth emphasizing that equation (10) says
that bond prices depend on the dynamics of the
state-price deflator—and on nothing else. Therefore,
a model of bond prices is nothing more or less than
a model of the state-price deflator.2!

The value of a perpetuity. A perpetuity is an
asset that pays dividends at a constant rate in per-
petuity (that is, forever). Formally, the dividend rate
for a perpetuity is d(t + ¢h) = 1 for all 2 > 0. Therefore,
the value of a perpetuity is given by

1) v-| 3,

i=1

- i E, [—“(; Z;)h)}h = i pCLi+inh.
i=1

=1

Thus, the value of a perpetuity is the sum of the
values of all zero-coupon bonds, treating the bond
prices as rates of flow.?2 For example, if the yields
on all bonds were equal to a constant », then
p(t, t +ih) = e’ and the value of a perpetuity
would be

ie—rihh: h zl
= -1 7’

where the approximation is accurate for small /4.%

Dynamics of the State-Price Deflator
As noted above, modeling the term structure of
interest rates is nothing more or less than mod-

eling the dynamics of the state-price deflator, a task
undertaken in this section. It is convenient to begin
by modeling the dynamics of the interest rate.

The interest rate is assumed to evolve through
time according to the following stochastic differ-
ence equation:®*

A2) r@+h) -r@) =x 6, -r(O]h + 6l + h).

Equation (12) expresses the change in the interest
rate as the sum of two components: the expected
change, x [0 — 7(¢)]h, and the unexpected change,
ce(t+h)®

In equation (12), x,, 8, , and ©, are fixed parame-
ters, while €(Z + /) is a random variable that is inde-
pendent of what is known at time ¢. In particular,

et +n) ~N(Q,h),

where x ~ N(m, v) means the random variable x is
distributed normally with mean 7 and variance v.
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As a consequence, the conditional mean and vari-
ance of the unexpected change are

Eloe(t+ )] =6 Ele(t +h)] =0
E[(0elt + ) = 62E,[e(t + h)?] = 62 .

Thus, the change of the interest rate, (¢t + h) — (1),
is normally distributed with mean x [0, — ()] and
variance 03 h. Consequently, the rate of change
(per unit of time) of the interest rate is normally
distributed:

(A13) rt+h)-r() ~N(K7[GT —V(t)],cf).
h

In Appendix G, it is shown that 6 _is the long-run
(unconditional) mean of 7, K is the speed of rever-
sion to the long-run mean, and 63 /(2x,) is (approx-
imately) the long-run (unconditional) variance of 7.

The bank account. Let B(t) denote the value at
time ¢t of the “bank account” (sometimes called the
money market account). Funds invested in the bank
account earn the interest rate each period. Therefore,
assuming no additional funds are deposited or with-
drawn, the value of the bank account grows as fol-
lows: B(t + h) = e D"B(1), or

(14) log[B(t + h) —log[B(@)] = r(t)h.

There is no uncertainty about the rate of change
of the value of the bank account from ¢ to ¢ + /.

Nevertheless, there is uncertainty about future
rates of change because there is uncertainty about
the future interest rate. In other words, the return
on the bank account is risk free over the next period,
but it is not risk free over longer horizons.

Now we turn to modeling the dynamics of the
state-price deflator, which first may appear to be
completely arbitrary, as if produced out of thin air.
It will turn out that the form of the dynamics (in
terms of the interest rate and the price of risk) is
completely determined by the structure of asset
pricing. So the plan is first to “pull a rabbit out
of a hat” and then to explain how (and why) the
trick works.

For tractability, (¢t + h)/n(l) is assumed to be
lognormally distributed.?® Let

(15) log[r(t+nh)]-log[r(t)]

1
D+=N
r( )+2

h—-Ae(t+h),

where A is the price of risk,2” which is a fixed para-
meter in equation (15). Equation (15) implies that
the rate of change of the log of the state-price deflator
is normally distributed:

(16) log[r(t+h)]—log[rn(t)] N
h

VPN PEPY
[r(t) 27»,7»}.

The dynamics of the state-price deflator are
completely specified by the interest rate »(¢) and the

19.

20.

21.

22.
23.

24.

25.

26.
27.

Note that this argument would not work if the state-price deflator were not always positive. In fact, the absence of arbitrage
opportunities can be shown to imply the existence of a (strictly positive) state-price deflator.

In terms of the notation of equation (7), this means d(s) = 1/h if s = T'and d(s) = 0 otherwise. As the length of the period
h gets shorter and shorter, the dividend rate per period d(7) must get larger and larger. The reader may be comforted to
know that math that allows a sensible limit does exist.

Even though bond prices depend on nothing but the state-price deflator, they do not necessarily depend on “all” of the state-
price deflator. To see this, suppose the discount factor can be expressed as the product of two factors: xy. In general, £ [xy]
= Ex]E y] + Cov |z, y]. If E[y] = 1 and Cov [z, y] = 0, then E [xy] = E [x]. In this case, bond prices will depend only on z,
and modeling y is irrelevant for bond prices. Nevertheless, other asset prices (such as equity prices) will depend on both &
and y via their product.

Taking the limit as the step size h goes to zero in equation (11) produces v(t) = f‘g’ p(t, t +s)ds = f‘;" p(t, s)ds.

The phrase “accurate for small 2” means that the error due to the approximation can be made as small as desired by mak-
ing & sufficiently small and that in the limit, as 4 approaches zero, the expression is exact.

Equation (12) can be expressed in the form of a first-order autoregressive process: »(t + k) = o + Br(t) + e(t + ) where
0=0xKx",B=1-xh,ande( +h) =0l + ).

In the continuous-time limit, the two components are called the drift and the diffusion. To make the similarities with con-
tinuous time more apparent, we could write equation (12) this way: d,r(1) = [0, —r()]d,t + 0,d, W(t), where d,r(t) = r(l + h)
-r),dt=0U+h)-t=h,andd, W) =W +h) - W() =e(l + h). When equation (12) is interpreted as an approxima-
tion to the continuous-time limit, it is called the Euler approximation. It can be shown that the Euler approximation con-
verges (as h goes to zero) in distribution and pathwise to a stochastic differential equation (see Kloeden and Platen 1995).
See Appendix B for a discussion of lognormality.

At this stage, the “price of risk” is simply the name of the negative of the relative volatility of the state-price deflator. In the dis-
cussion that follows, when the absence-of-arbitrage condition is reexpressed in terms of risk and return, it will become apparent
why this name is appropriate. The minus sign on A in the diffusion in equation (15) is merely a convenience (part of the trick).
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price of risk A. The fact that A is a fixed parameter
is a very special assumption that greatly simplifies
the model but also greatly restricts its realism. Note
that changes in the state-price deflator depend on
the same shock that drives changes in the interest
rate, €(t + h). In other words, there is a single
source of uncertainty, which is another simplifying
and restrictive assumption.

Having pulled the rabbit out of the hat, let us turn
to the explanation of the trick, which amounts to
demonstrating that the symbolic expressions 7(t)
and A in equation (15) do in fact correspond to the
interest rate and the price of risk. We begin with the
interest rate. Combining the definition of the inter-
est rate given in equation (2) with the formula for
pricing a one-period bond given by p(t, ¢t + h) =
E[rn@ + h)/m@)] (see equation [10]), we obtain
E[r(t + h)/m(t)] = e " or

A7) w(t)= —10g(Et[75(;L+ h)/m(t)]) ‘

Using the algebra of lognormal random variables,
one can confirm that equation (17) does indeed hold
given equation (15).

To explain how the trick works with regard to
the price of risk, we need to derive the risk-return
relation, which in turn requires a formal specifica-
tion of the dynamics of bond prices.

Risk and return. If bond prices are assumed to
be conditionally lognormally distributed, then the
dynamics of the log of a bond’s price can be expressed
as follows:

(18) log[p(t+h,T)]-loglp(t,T)]

= u(t,T)—%c(t,T)Z h+o(t,TYe(t+h).

Equation (18) implies that the rate of change of the
log of bond prices is normally distributed:

log[p(t+h,T)]1-log[p(t,7)]
h

-N u(aT)—éo(t,T)z,c(t,T)Z .

Using the algebra of lognormal random variables,
one can confirm that

1og(Et[p(t+/}7:T)/ @D _ o,

as required by equation (6). Finally, note that

Cov log(n(zm)jlog p(t+h,T)
' ) ) (6, T)

=-Ac(t,T)h.

Here we see the first connection with A.

Now that the dynamics of the state-price deflator
have been established, the martingale property of
deflated bond prices can be used to reexpress the
condition for the absence of arbitrage in terms of
risk and return.

Equation (10) can be written in terms of deflated
bond prices:

(19) =(Op(, 1) = E,[r(Dp(T, T)],

where, of course, p(7T, T) = 1. Equation (19) holds
forallt” T. This martingale property implies that the
expected rate of change of w(¢)p(¢, T') is always zero:

20) E _n(t+h)p(t+h,T)—n(t}p(t,T)}=0'

h

Equation (20) can be expressed as

e & (n(Hh)j(p(Hh,T)H:L

m(t) p(t,T)

Equations (15) and (18) and the algebra of lognor-
mally distributed random variables®® can be used to
express (21) as

@22) uwt, ) =r@) + Ao(t, T).

Equation (22) expresses the well-known relation
between risk and return: The expected return w(z, 7
equals the risk-free rate »(t) plus the covariance-
based risk premium Ac (¢, T), which demonstrates
why A is called the price of risk.

Equation (22) is the same relation derived in
Fisher (2001a). In that paper, this relation was
obtained as a condition for the absence of arbitrage by
directly examining potential arbitrage portfolios. In
this article, equation (22) is derived as an implication
of a very powerful proposition (that is, the martingale
property implies no arbitrage opportunities) that
does not require actually looking at any portfolios.

Thus far, w(¢, 7) and o (¢, 7) are purely formal:
They are merely place holders. The task of a model
of the term structure is to solve equation (22) for
w, T) and o (¢, T) in terms of the parameters that
determine the dynamics of the interest rate and the
state-price deflator (x, 6,, c,, and A). This task is
addressed in the following section.
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Solving the Term Structure Model

he solution for bond prices p (¢, T) will depend on

the term to maturity T = 7' ¢ and any state vari-
ables that appear (either directly or indirectly) in the
risk and return condition of equation (22) via the
interest rate and the price of risk. In the model in this
article, the interest rate is itself a state variable.2 In
fact, it is the only state variable. This statement can
be confirmed as follows: First, since the price of risk
A is a constant parameter in this model, no state vari-
ables are required to describe its evolution. Second,
the evolution of the interest rate depends only on the
current value of the interest rate itself, as shown in
equation (13).

Since the interest rate is the only state variable
in this model, the solution for bond prices will
depend only on maturity and the interest rate.
Suppose that the solution for bond prices can be
expressed as p(t, T) = P(»(t), T —t), where

(23) P(r,1) = e@@20r,

(This conjecture will be confirmed below once the
model is actually solved). For each value of T,
there is a pair of coefficients a(t) and b(t). A solu-
tion to the term structure model amounts to com-
puting the sequences {a(t)}:, and {b(D}; in
terms of the parameters x,, 0, 6, and A, where T
=0, h, 2h, 3h.... The condition p(7T, T) = 1 implies
P(r,0) =1 for all values of r, which in turn implies
a(0) = 0 and b(0) = 0. These two conditions pro-
vide the initial conditions for the sequences
{a(}; and{b(D)},

Equation (23) makes a very strong statement
about bond prices. First, it asserts a specific func-
tional form.? Second, it says that absolute time
does not matter: ¢ and 7" enter only through their
difference, T'—t¢. Third, it says the effect of the inter-
est rate on bond prices is independent of what may
have occurred in the past.

Before equation (23) is used to express the
dynamics of bond prices, it is first used to express
the forward rate (see equation [3]):

@ Jt, T)=A (T -t)+B (T -1)r(1),

where
Af (T) = W and
B,()= b(’c)—i)l(r—h).

As we will see shortly, the absence-of-arbitrage
condition amounts to imposing restrictions on the
sequences of forward rate coefficients {A} and
B,

Now we turn to the dynamics of bond prices.
Using equation (23), we can write??

J1=1

(25) log[p(t+h,T)]-1oglp(t,T)]
=(=0, =, V)= (=0 =0 77)
=0, =0, )+ (b =be, )7 —b, (77, —1),
ft+th

where T = T' - . As indicated in equation (25), the
change in the bond price is composed of two parts,
one of which depends on the forward rate and the
other of which depends on the change in the inter-
est rate (that is, the change in the state variable) as
given by equation (13). Collecting terms into drift
and diffusion, we have

log[p(t + h, T)] - log[p(t, T)]
= {[A,(T-1) + B,(T - )r()]
—[b, %8, — (DI —b,_,0,e(t + h).

Therefore, by matching coefficients with equation
(18), we see that

(26) nt+t)=[A,(D+B,(Dr0)]
_b(T_h)KV [6,—7"@)]
+lb(1—h 67
2
@7 o i+ =-bt-h o,.

Equation (26) indicates that the expected return is
composed of three parts: (1) the part due to the pas-
sage of time (the forward rate), (2) the part due to the
expected change in the interest rate, and (3) the part

28. See Appendix B. Let &, = log[r(t + 2)/n(t)] and x,, = log[p( + &, T)/p(t, T)].
29. In other models, the interest rate may be a function of the state variables. For example, we could have r(¢) = x,(1) + x,(1),

where x, and x, are the state variables.

30. This form of bond prices is called exponential affine because according to equation (23), log[p(t, T)] = —a(t) — b(T)r(t) is
affine in the state variable 7(¢) (that is, linear in 7(¢) plus a constant). There is a broad class of exponential affine models of

the term structure. See Duffie and Kan (1996).

31. In the limit as & goes to zero, Af('c) =a’(7) and Bf(t) = b’(1), where the prime sign indicates differentiation.
32. To make the notation more compact for space considerations, subscripts will be used on occasion in place of parentheses to
denote arguments for time and maturity. In particular, a = a(1), b, = b(1), r,= (1), and so forth.
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due to the nonlinearity of the relation between the
interest rate and bond prices (Jensen’s inequality).*

Now these expressions are inserted into equa-
tion (22) and rearranged to obtain

(28)

A, (D=bE-E+5 0 b(r—hﬂ
+ B, (D) +b(x-n)x, ~1]r(1)=0,
where
£:=x0-1Ac,.

Equation (28) is the absence-of-arbitrage condition
for our simple model. In order for equation (28) to
hold for every possible value of the state variable
7(1), each term in square brackets must be equal to
zero. Setting each term equal to zero and rearranging
produces the following pair of difference equations:

G0 a0y pyg-Latpce-ny,

(30) b(t)-b(t—h) —1-b(t-h)K,,
h
subject to the initial conditions a(0) = b(0) = 0.3*
(The left-hand sides of equations (29) and (30) are
simply A . (1) and B h ™)
The solution to equation (29) — equation (30) is

31 a(t)=K,t+K,07,

1_(1_Kyh)r/h ~ 1—eg &7

(32) b(1)= ,
K, K,
where
ot 1-1-h ) 1 1-eT
fomg 2K K
[(1—m<,)%—1}[2m<r+(1—m<,)%—3} .
Kyi=— 5 -—
2x,”(hx, -2 2K,
z3+e"2‘”—4e‘“_ T
41<,3 21(,2'

(The approximations are accurate for small /.%)
Note that the only parameter K, and K, depend on
is x,. At this point, we can substitute the solution
for a(t) and b(t) into p(t, t + 1) = e ¥WLO® gnd

confirm that this expression satisfies the absence-
of-arbitrage condition given the way the state-price
deflator has been modeled.

Although there are four parameters in the
dynamics of the interest rate and the state-price
deflator (%, 6, ¢, and L), the solution for a(t) and
b(t) depends on only three parameters: ¥, ¢,, and
€. Suppose we fix k , 6, and . Then for any given
6, we can find a value for A that is consistent (and
vice versa). In order to pin down the value of 6,
(and hence the value of A), we must turn to the
dynamics of the interest rate.?¢

Forces That Shape the Yield Curve
he three forces that shape the yield curve are
(1) the expected future interest rate, (2) the risk
premium, and (3) the convexity effect due to the non-
linear relation between bond prices and rates (Jensen’s
inequality). This section examines various shapes of
the yield curve and how they depend on those forces
as expressed in terms of the parameters of the dynam-
ics of the interest rate and the state-price deflator.
We begin by examining the forward rate curve,
which displays most clearly the various forces. In
Appendix C the dynamics of the interest rate are
used to compute an expression for the expected
future interest rate in terms of the current interest
rate (see equation [C.6]):
Er

ol

=0, + (1 -x )" -6,
=0, + (1-xb)(r,—6,),

where the solution for b_in equation (32) is used in
the second line. Given this expression and equation
(30), the forward rate can be expressed as

(33)
S i+t)=A;+B}r,
:[(Kr er _A‘Gr )bx—h, _567 b’[—/L ]+(1_Kr br—h)n

=[0,+(1-x,b,_,)(7,—6,)]H-Ac; —é(cf 1.

| S —
B, S

A similar decomposition for zero-coupon yields can
be obtained recalling equation (4):

t/h

y(t,t+‘c):%§ F(tit+ih)

1 T/h

=—)> B[ +Ps,
t/h; N
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where @ := L3710,

At this point, we note that our simple term struc-
ture model satisfies the weak form of the expecta-
tions hypothesis. By way of background, the strong
form of the expectations hypothesis says that the
current forward rate equals the expected future
interest rate:

B [ t+1) =E]r,, )

When there is no uncertainty, the strong form of the
expectations hypothesis is equivalent to the
absence of arbitrage opportunities.’” The weak
form of the expectations hypothesis allows for the
addition of a constant term premium (denoted by ¢.)
that depends on the forecast horizon t (but not on
time ¢):

(35) St +D) =Er, ]+ 0.

The term premium ¢, as given in equation (33),
decomposes into two parts: one that depends on
the risk premium and the other that represents a
convexity term. These two forces affect the shape
of the yield curve in distinctly different ways. To
highlight the difference, an approximation that is
accurate for small K can be used:

6/ =~c,t and (o)’ =021

Thus equation (33) can be approximated by

(36) S0+ = E,[1,.]- Ao, T—%cf 2

where it is also assumed that / is small. Equation (36)
displays clearly the three forces that shape the
forward-rate curve. The average slope (at the short
end) is determined by the covariance between the
state-price deflator and the interest rate. Therefore,
to capture the average upward slope seen in the
data, this covariance must be negative. In particular,
if one assumes 6, > 0, then one must have A < 0.%

Paths for the Expected Future Interest Rate

10 —
K, =0.01
—_— 8 -
=
S K, = 0.10
a K, = 1.00 =
z 4
2
> 2
0 T T T T T T
0 5 10 15 20 25 30

Forecast horizon (years)

Note: Paths assume a long-run mean of 5 percent and a cur-
rent value of 1 percent. The paths differ by the speed of mean
reversion x,.

The convexity term tends to offset the upward
slope imparted by the risk premium. Although its
effect disappears as maturities go to zero, it
becomes large as maturities increase and can in fact
dominate at the long end and actually cause the
term structure to slope downward beyond about
twenty years.

Here we examine how changes in the parameters
of the dynamics of the interest rate and the state-
price deflator affect the yield curve. First, we exam-
ine how the speed of mean reversion affects the
path of expectations, K [r, ]. Figure 3 shows the
effect of x, on the speed at which expectations
revert to the mean. The effects of the other two
parameters are straightforward. An increase in the
risk premium stemming from the price of risk will
increase the slope of the yield curve while an
increase in the volatility of the interest rate will
increase its curvature.

Calibrating the model. Now this simple model
will be calibrated to the data to show what the
term structure looks like. First the parameters of
the interest rate dynamics, K, 6,, and 6 , are esti-
mated. Then, given these values, a value for A (which
pins down &) can be chosen to try to match actual
yield curves.

33. In effect, we have applied [to’s lemma, the main workhorse for computing the dynamics of the transformation of a stochastic
process in continuous time. Note that the so-called extra term in equation (26) from Jensen’s inequality is present in

discrete time as well.

34. In the limit as & goes to zero, equations (29) and (30) become a pair of ordinary differential equations: a’(t) = b(1)§ —

(1/2)62b()? and b'(1) = 1 - b(DK,.

35. The approximations are the exact solutions to the differential equations described in footnote 34.

36. It is a general feature of term structure models that only a subset of the parameters that determine the dynamics of the
state-price deflator and the state variables is identified in the cross-sectional bond-pricing solution.

37. For more on the implications of the expectations hypothesis when there is no uncertainty, see Fisher (2001a).

38. This result can be computed directly from equation (33); it does not depend on the approximations used in equation (36).
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Estimated Parameter Values and
Asymptotic Standard Errors

Parameters 0, K, c,
Estimated values 0.050 0.124 0.0086
Standard errors (0.030) (0.217) (0.0007)

Note: Standard errors are computed using a Newey-West correc-
tion with five lags.

The method of moments is one way to estimate
the parameters.® Let e,,, denote the one-step-ahead
forecast error e’; (see equation [C.9]). Then

6r,+h, = THh, - Er[VHh,]
=7, —r+x.0,-7r)h]
=0,e( +h).

The properties of €(t + h) imply the following
moment conditions:

(37 Ele,,)=0,Elre,,]=0,and (e, = 6> h.

z+h] =
These three moment conditions can be used to esti-
mate the three parameters of the interest rate
process: k,, 0, and ©,.

Suppose there are N + 1 observations of the
interest rate sampled with time step %: 7, 7, 7, ,. ..,
7y, and the total time span is (N + 1)h. Let K, 6,
and G denote the estimated values. Then, for ¢ = 1,
2,..., N, the estimated forecast error in terms of

estimated coefficients is defined to be
(38) =" ~iciy % (0, ~ oy V-

The sample moments that correspond to equa-
tion (37) are

1< 1Y
(39) Ng,éwo, N;@_mém:o, and
1 N
A~ 2 A2
T ih) = rh-
N 26 =6

The method of moments estimators 6, €, and &, are
the solutions to equation (39).

Table 2 presents estimates of the interest rate
parameters based on the estimation technique
described above using ten years of monthly data for
zero-coupon bond prices from December 1987 to
November 1997 (N = 119 and /& = 1/12).%° The esti-
mated unconditional mean of 5 percent is consis-

Estimated Unconditional Distribution
for the Interest Rate

tent with the average value of the interest rate over
this period. The estimated half-life (the length of
time it takes the expectation to return halfway to
the long-run mean; see equation [C.7]) is log(2)/k,
= 5.6 years, which—although it agrees with what
others find—seems quite long. It is an indication of
just how persistent the interest rate is on average.

The estimated unconditional distribution is shown
in Figure 4. This distribution gives some probability
to negative interest rates, but nominal interest rates
(which is what we are dealing with here) cannot be
negative.*! The probability that the interest rate is
negative is only 0.002, so this problem is not terri-
bly important.

Figure 5 shows the conditional expectation of
the interest rate, assuming that the current interest
rate is at 1.25 percent, and error bands of two stan-
dard errors. After 5.6 years, the expected rate is
3.125 percent, which is halfway from 1.25 percent
to the long-run average of 5.0 percent. The error
band (at that point) is from 0.4 percent to 6.4 per-
cent, effectively 3 percentage points on each side of
the expectation.

Figure 6 shows what the zero-coupon yield curve
looks like with the estimated parameters and vari-
ous values for the price of risk A. The curve with A
= —0.5 produces a yield curve that is not entirely
unreasonable. Nevertheless, the curve does not dis-
play the characteristic downward slope beyond
about twenty years. To obtain this feature, one must
deviate somewhat from the estimated values. This
is understandable: Since this term structure model
is so simple, it cannot fit all of the major features of
the term structure.

The way we have proceeded thus far is to fit the
dynamics of the interest rate as well as possible
(given the assumed form of the interest rate dynam-
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The Expected Path of the
Short Interest Rate and Error Bands

7 — — -
6 — —
5 — -~

4 — s

37

Percent

Years

Note: Each of the two error bands is two standard deviations from
the expectation. The interest rate is set at 1.25 percent.

The Zero-Coupon Yield Curve Using
Estimated Values for the Price of Risk

o /
A= -1.0
8 J—
s N e
= -0.5
2 o
g A= 0.0 m——
s 4
? A = +0.5
= —
2— A = +1.0
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Maturity (years)

Note: The curve assumes » = 0.050. See Table 2 for various
values of A.

ics) and force all the errors on the yield curve. An
alternative way to proceed is to fit the parameters to
the average yield curve and then let the dynamics of
the interest rate take up the slack.*? Figures 7 and 8
show the zero-coupon yield curve when the parame-
ters are fitted to the average yield curve. In Figure 7,
the current interest rate 7, is set at its long-run aver-
age of 5 percent while in Figure 8 it is set at 1 percent.

Conclusion and Extensions

n the model of the term structure presented in

this article, the interest rate follows a simple sto-
chastic process, and the price of risk is a fixed para-
meter. Because the price of risk is fixed, the weak
form of the expectations hypothesis holds in this
model.*3 For this reason (and for others), the model
cannot match many important features of the term
structure for U.S. data. Nevertheless, the solution
to the model presented here illustrates a number of
important features present to one extent or another
in essentially all term structure models. In addition,
the steps followed to solve the model are the same
steps one would follow to solve a more general

model. To a large extent, therefore, the journey we
have taken is itself the goal.

As noted, the model solved in this article satisfies
the weak form of the expectations hypothesis. The
expectations hypothesis has held a central position
in the theory of the term structure of interest rates
over the years. However, a substantial amount of evi-
dence shows that actual data do not satisfy the
expectations hypothesis.#* Why does it fail to hold?
At its core, the expectations hypothesis asserts that
changes in forward rates solely reflect changes in
forecasts of future interest rates. Indeed, forward
rates do reflect expectations of future rates; but they
also reflect other features that are essentially inde-
pendent of expected future rates. However, in the
model solved in this article, the only source of varia-
tion in forward rates is changes in expectations of the
interest rate. To see this, note that equation (35) can
be written as f(¢, T) = E\[r,.,] + ¢, . Therefore, the
dynamics for the forward rate can be expressed as

JU+h,T) -0, T)
=, e ) =By, D + (0, — 07,

39. See Greene (2000) for an introduction to the method of moments.
40. The data are taken from yield curves that are computed from the U.S. Treasury bond files of the Center for Research in

Security Prices (CRSP).

41. One can always hold currency, which earns a nominal rate of zero. If the nominal interest rate were negative, then bondholders
would sell their bonds for currency, putting downward pressure on bond prices and driving the nominal interest rate back

up at least to zero.

42. There is yet a third way that involves estimating the cross-sectional yields simultaneously with the interest rate dynamics,

treating the yield curve data as a panel.

43. See Vasicek (1977), who provided the first derivation of the continuous-time version of this model using absence-of-arbitrage
arguments. Campbell (1986) derived the same model in a representative agent setting.
44. The regression results in Campbell and Shiller (1991) demonstrate that some implications of the expectations hypothesis

are very much at odds with the data.
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The Zero-Coupon Yield Curve with
Parameters Fitted to the Average Yield Curve,
Interest Rate of 5 Percent
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Note: The parameter values are x, = 0.203, ¢, = 0.0041, and
(assuming 6, = 0.050) A = -0.245.

The Zero-Coupon Yield Curve with
Parameters Fitted to the Average Yield Curve,
Interest Rate of 1 Percent

Yield (percent)

0 T T T T T T T
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Note: The parameter values are x, = 0.203, ¢, = 0.0041, and
(assuming 6, = 0.050) A = -0.245.

which shows that all of the random variation in the
forward rate is attributable to variation in the ex-
pected future interest rate.

To model the failure of the expectations hypoth-
esis one observes in U.S. data, one can expand the
model by adding a second state variable that is inde-
pendent of the interest rate. (This exercise would
require a second source of uncertainty in addition to
e(t + h)). In order for a state variable that is indepen-
dent of the interest rate to affect bond prices (and

hence forward rates), it would have to help determine
the price of risk. Such a state variable could not help
forecast the interest rate (by construction); for this
purpose it would simply be noise. Consequently, one
would be faced with what is known as an error-in-
variables problem were one to use forward rates to fore-
cast future interest rates. It is this feature that would
produce the failure of the expectations hypothesis.

A fuller treatment of this subject must be left to
a future article.
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APPENDIX A

The State-Price Deflator in a Representative Agent Model

his appendix demonstrates how the state-

price deflator can be derived from the mar-
ginal utility of a representative agent.! The reader
should be familiar with the discussion on pages
42-48.

We begin by focusing on the utility an agent
derives from the flow of consumption. For the
moment, we ignore the timing of the consump-
tion flow. Let ¢ denote the rate of consumption
(a flow); then ch is the amount of consumption
over the period. Let u(c) be the rate of utility (a
flow) derived from the rate of consumption; then
u(c)h is the amount of utility obtained over the
period. We will restrict ourselves to the follow-
ing utility function:

¢ -1 1

— y#
A w@={1-y 7.

log(c) y=1

This utility function is defined only for positive
consumption ¢ > 0. The parameter vy is called the
coefficient of relative risk aversion; it measures
the agent’s attitude toward risk. A larger value of
v indicates greater aversion to risk.?

The additional utility from a small additional
amount of consumption is called marginal utility.
Let Ac be a small increment in the rate of con-
sumption. Then the change in consumption is
Ach and the change in utility is

u(c+Ac)h—u(c)h

{MJMLW Ach,

Ac

where the form of the utility function given in

equation (A.1) is used in deriving the approxima-

tion. The approximation is accurate for small Ac.?
Now we consider the notion of expected lifetime

utility, the expectation of discounted future utility

from future consumption flows. Let c¢(t + ih)

Additional Notation

c(t) rate of consumption flow at time ¢

) rate of time preference

Y coefficient of relative risk aversion

W, expected growth rate of consumption
c volatility of growth rate of consumption

7(t) real state-price deflator

2(t) price level at time ¢

x(t) expected rate of inflation at time ¢
c volatility of the inflation rate

K speed of mean reversion for the expected
inflation rate

0, long-run mean of expected inflation
o, expected inflation volatility

7 real interest rate

N real price of risk

denote the rate of consumption at time ¢ + ¢/. The
expected lifetime utility as of time ¢ for the agent is*

(A.2) U(t)=Et{ith u[c(t+z’h)]h},

=0

where & > 0 (the rate of time preference) mea-
sures the investor’s impatience. The larger § is,
the less future consumption counts in expected
lifetime utility.

Let Ac(t + 7h) denote the change to the rate of
consumption at time ¢ + ¢/. A set of changes in the
rates of consumption {Ac(t+7h)};, could be the
result of revised investment decisions: Sell govern-
ment bonds, buy technology stocks, invest in real
estate, build a factory, go back to college, etc. From
the perspective of time ¢, the change in lifetime util-
ity attributable to a set of changes in the rates
of consumption is the expected value of the dis-
counted sum of all the individual changes in utility:®

1. The table contains the notation used in this appendix.

2. Here is a thumbnail sketch of the meaning of risk aversion. Suppose there are two equally likely payouts to a gamble, ¢,
and c,, where ¢, # ¢,. The utility of the payouts is u(c,) and u(c,). The average utility is [u(c ) + u(c,)]/2. The average
payout is (¢, + ¢,)/2. The utility of the average payout is u[(c, + ¢,)/2]. The agent is risk averse if [u(c)) + u(c,))/2 <
u[(c, + ¢,)/2]. In other words, the agent is risk averse if the average utility from the payouts of the gamble is less than
the utility from the average of the payouts. Given the utility function in equation (A.1), the agent is risk averse if y > 0.

3. In the limit as Ac goes to zero, the term in parentheses goes to the derivative u’(c).

o~

. For simplicity, the agent is assumed to live forever.

5. VU(t) is called the utility gradient, and the right-hand side of equation (A.3) is the inner product representation of the
utility gradient. In the limit as /2 goes to zero, VU(@) = E, [IT e c(s)’YAc(s)ds]. See Duffie and Skiadas (1994) for a

general abstract treatment in continuous time.
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APPENDIX A (continued)

(A.3) VU(t)zE{ie‘m”c(t+ih)'YAc(t+ih)h}
=0

If there were any feasible set of changes in con-
sumption for which VU(?) # 0, then the agent
could use that set of changes to increase utility.
Therefore, if the agent has maximized lifetime
expected utility, then VU(?) =0, or (pulling the first
term in the sum out of the expectations operator)

0=c(t) Y Ac(t)h
+E{Z e e(t+ih)™ Ac(tﬂ'h)h:l.
3=1
This condition (the so-called first-order condition)
can be expressed as
(A4) -Ac(Hh

(e M ot +ih) Y
=E, =51 =
e c(t)

JAc(tﬂ'h)h:l.

i=1

The left-hand side of equation (A.4) is the
amount of current consumption the agent is will-
ing to forgo in order to obtain the extra future
consumption given on the right-hand side.® In
other words, —Ac(t)h is the value of the con-
sumption dwidends {Ac(t+ih)h}%, -

The dividends in equation (A.4) are measured
in units of consumption; in other words, they are
real dividends. Similarly, —Ac(?)h is the real
value of those real dividends. In order to distin-
guish real dividends and prices from nominal div-
idends and prices, we will use a “hat” to denote
real values. In particular, let

d(t+ih) = Ac(t+ih) and 0(t) = —Ac(t)h.
In addition, if we simply define
(AB) R(t) = ec@®)”,

then we can write equation (A.4) as

(A.6) @(t)=E{z (%

i=1
which is identical in form to equation (7).

jd(Hih)h}

The price level (that is, the price of consump-
tion in terms of dollars) can be used to transform
equation (A.6) into an expression for nominal val-
ues of nominal dividend streams. Let 2(¢) denote
the price level at time ¢, and let

(A.7a) d(t+ih)=2)d(t+ih)=2(t)Ac(t+ih);
(A.7b) v(t)= 2(t) V(@) = —=2(t) Ac(t) ;
(A.7¢) m()=71)/ 2(t)=e c@)" 2(t).

Real prices and real dividends have been mul-
tiplied by the price level to convert them into
nominal values. By contrast, the real state-
price deflator has been divided by the price
level to convert it into a nominal state-price
deflator; this division is required in order to
maintain the validity of equation (A.6), which
now becomes

v(t):E{i(n(t%h))d(tﬂ'h)h}

=\ D

Dynamics of Consumption and the Price Level
The dynamics of the state-price deflator in equa-
tion (A.7c) can be computed from the dynamics
of consumption and the price level.

First, consider the dynamics of consumption:
(A.8) loglc(t +h)] —loglc(D] = u i+ .t +h),
where [, and o, are fixed parameters.” In equa-
tion (A.8) the expected growth rate of consump-
tion is constant although the actual growth rate
is random.

Next we turn to the dynamics of the price
level, which we allow to be more complex. In par-
ticular, let the expected growth rate of the price
level x(¢) (the expected inflation rate) be a sto-
chastic process that follows a first-order auto-
regressive process:®

(A9a) loglz(t + h)] —logl=(D)] =x(Dh + o et +h)

(A9b) 2 +h)—x2@) =k, [0, -2(O]h + 0,0 + ).

6. For concreteness, assume Ac(Z + ¢h) = 0 for i > 1. It follows (given VU(t) = 0) that Ac(¢) < 0 and thus -Ac()h > 0.

7. Recall that e(t + k) ~ N(0, h).

8. The expected rate of inflation is (implicitly) defined as E {log[z(¢ + h)/z(®)]}/h. The reader should be aware that some
authors define the expected rate of inflation as log{E,[2(¢ + h)/z(¢)]}/h. The difference between the two notions of

expected inflation is ¢2/2.
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Now we compute the dynamics of the state-
price deflator. Given equation (A.7c), we have
log[r(t)] = =0t — vy log[c(t)] — 2(¢), from which we
compute the dynamics:

(A.10) log[n(t+h)]-log[r(t)]=
—0h—7y{loglc(t+h)]-loglc(t)]}
—{log[=(¢+h)]-1og[=()]}

=—{0+yu. +x(D)h—-(yo, +c_ )e(t+h).
[ —_———
r(®+132 A

From the dynamics of the state-price deflator
we can identify the interest rate and the price of

risk. Matching coefficients in the second line of
equation (A.10) with equation (15), we obtain

(A.11a) V(t)=6+yuc+x(t)—%(yoc+oz)2;
(Allb) A=yo, +O,.

The dynamics of the interest rate follow directly
from the dynamics of the expected rate of inflation.
Using equations (A.11a) and (A.9b), note that

(A12) 7r(t+h)—r@)=2(+h)—2(t)

=%,[0,—2(®)]h+c,e(t+h)

=%, [8+yu, +6, —%(ycc +0,)°]

L
K,r 0
r
—r(t)h+o,e(t+h),
)
o
o~

where (in going from the second line to the third
line in equation [A.12]) we have used equation
(A.11a) a second time to eliminate x(¢). We con-
clude that k. = x , 0, = 0, and

er =6+Yuc +ex _%(’ch +Gz)2'

The Real Interest Rate and the Fisher Equation
In the preceding discussion, the expression for
the nominal state-price deflator was used to
derive the nominal interest rate and the nomi-
nal price of risk. This section follows the same
steps with respect to the real state-price defla-

tor to derive expressions for the real interest
rate and the real price of risk. These expres-
sions will provide insight into both the real and
nominal interest rates.

Given equation (A.5), we have log[rt (t)] = -0t
—vylog[c(?)], and thus

log[n(t+h)]-log[r()]

=-0h~—y{loglc(t+h)]-log[c()]}

=—(0+yp, Jh—yo, e(t+h).
— Se=

P32 A
These dynamics imply
(A.132) i=5+yuc—%(ycc)2
(A.13b) A=Yo,

where # is the real interest rate and A is the real
price of risk.

Equation (A.13a) shows that the real interest
rate is composed of three terms. The first term is
the rate of time preference, &: Greater impatience
is associated with higher real interest rates. The
second and third terms each involve vy, but y plays
a different role in each term. In the third term,
which reflects Jensen’s inequality, y measures risk
aversion, as one would expect from the discus-
sion of the utility function in equation (A.1).

However, vy does not represent risk aversion in
the second term in equation (A.13a). In the lifetime
expected utility function in equation (A.2), not
only does y measure the agent’s risk aversion, but
1/y measures the agent’s elasticity of intertempo-
ral substitution.’ If there were no uncertainty
about the growth rate of consumption (if 6, = 0),
then equation (A.13a) could be reexpressed as
(A14) —M.=7' (8-

Equation (A.14) can be thought of as expressing
the demand for -, (the log of current consumption
relative to future consumption) in terms of the real
interest rate (the log of the price of current con-
sumption in terms of future consumption), so that
v corresponds to the elasticity of demand.'” The
more responsive current consumption is to the real

9. More general intertemporal utility functions such as recursive utility allow for separate parameters for the two effects.
See Epstein and Zin (1991) and Duffie and Epstein (1992).
10. Note that the rate of time preference & equals the real interest rate that makes current and future consumption equal
(1, = 0). This feature is essentially the definition of the rate of time preference.
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APPENDIX A (continued)

interest rate (that is, the bigger y! is), the less
responsive the real interest rate is in equation
(A.13a) to the growth rate of consumption.

Thus far we have examined the role of prefer-
ences (in the form of the parameters & and 7y) in
determining the real interest rate. Technology (in
the form of the marginal product of capital) also
plays an important role in determining the real
interest rate, but in equation (A.13a) its effects
occur indirectly through p, and 6. A more com-
plete model would make these effects explicit.
However, for our purposes, making these effects
explicit is not necessary: No matter what the effects
of technology are, we are able to correctly infer
the price system from marginal utility because we
have assumed the agent has optimized, and con-
sequently the price system is proportional to the
utility gradient.

We now return to consideration of the nominal
interest rate. The expressions for the real interest
rate and the real price of risk in equation (A.13)
can be used to gain additional insight into the
expression for the nominal interest rate in equa-
tion (A.11a). The nominal interest rate can be
expressed as a so-called Fisher equation (Irving
Fisher 1930) that incorporates uncertainty:

(A.15) r(t)=ﬁ+x(t)—icz—%oi.

Equation (A.15) says that the nominal rate equals
the real rate plus the expected rate of inflation
plus two additional terms: (1) a risk premium
that depends on the covariance between the con-
sumption growth and inflation and (2) a Jensen’s
inequality term that depends on the variance of
inflation. The decomposition of the nominal rate
into the four components on the right-hand side
of equation (A.15) is quite general. However, in a
more general model, all four components would
be stochastic and contribute to the variation of
the nominal rate.!!

Solving the Real Term Structure
Because the real interest rate # is deterministic in
this example, the no-arbitrage condition is equiv-
alent to the expectations hypothesis. Moreover,
since the real rate is constant, the term structure
of real zero-coupon yields is flat, which we can
confirm by following the steps used on pages
49-50 to solve the nominal term structure.

The no-arbitrage condition for the real price of
a real bond is given by

P, T)=E[r(T)/ 7).

This condition can be expressed in terms of risk
and return:

(A.16) (i(t,T)=F+A&(t,T),

where [L(¢,T) is the real expected return on a real
bond and 6 (¢,7) is the volatility of the real return
on a real bond. Since both # and A are constant
parameters, there are no state variables; conse-
quently, the real price of a real bond will depend
only on the matuArity of the bonAd‘ In particular,
assume p (t,T) = P (T-t), where P(1) = %®, Then

log[p(i+h,T)]-log[p(:,T)]

_(d(r)—d(t—h})h

o S 2
a1

where T =T -t and 6(¢,T) = 0. Therefore, the no-
arbitrage condition in equation (A.16) becomes

a(t)—a(t-h)

h
subject to @(0) = 0. The solution is a(t) = 77,
which implies p (¢,7) = e’ which in turn
implies the solution for real zero-coupon yields:

y@D =r.

:7,\"

11. Also, the nominal price of risk can be expressed as the real price of risk plus the volatility of the inflation rate: A = At ..
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APPENDIX B

Facts about Lognormal Random Variables

Lognormal random variables are built from
normal random variables. Let 2 be a random
variable that is normally distributed with (popu-
lation) mean m and (population) variance v > 0.
This variable is denoted as x ~ N(m, v). The
probability density function (PDF) for x is

—(2—m)2 /(2
e (x—m)/(2v)

f@)=—7——
J 2TV

The graph of f(«) is the well-known bell curve.

The mean and variance can be expressed in terms

of the expectation operator:!

Elx] =J:xf(x)dx=m,

and Var[z]=E[(z—m)’]
:r' (x-m) f(x)dx=v.

A lognormally distributed random variable can
be constructed from a normally distributed ran-
dom variable in the following way: If x is normally
distributed, then z = " is lognormally distributed.
In other words, the log of z is normally distributed:
log(z) =x ~ N(m, v).

The most important fact about a lognormally
distributed random variable is that the (popula-
tion) mean of & depends on both 7 and v:

B B=| e f(x)da=e".

Note that log(E[z]) = m + "sv. It is worth empha-
sizing that log(E[z]) # E(log[z]) unless v = 0. This
inequality is an example of Jensen’s inequality,
which states that given a suitable function g,
g(Ex]) # E(glr]) unless g[x] is linear in « (or
unless x is deterministic).?

Two Random Variables and One Shock
Suppose there are two normally distributed ran-
dom variables x, and x,, where x, ~ N(m,, v,), for
¢ = 1, 2. In particular, suppose

h+0,¢€,

X; =[Hz‘ _écf

where € ~ N(0, 2). Then,

v, =Var[x,]= E[(x,—m,)’]

=E[(0,e)’]=0"E[e’]=0h.
In addition,
Covlx,,2,]=E[(2, —my ) (2, — )]
=E[(61 g)(o, s)]
=0,0,F,[¢”]
=0,0,h.
Note that x; + x, ~ N(M, V), where
M= E[x,]+ E[2,]=[m, +m2—é(012+o§)]h
V =Var[z, |+ Var[x,]+2Cov[z,,2,]

2 2
=(0;+05+20,6,)h.
If zi = Q‘T’i, then E[z7] = epih and
E[Zl z2]= E[ex,+x2 ]=6M+ﬁV =e(u,+u2+a‘ Gg)h'

Therefore, E[z,2,] = 1 implies

B.2) u, +u,+o00,=0.

Additional information. It may be of inter-
est to note that Var[z,] = Var[x,] and Cov[z,, 2,] =
Covlx,, 2,], where the approximations are accu-
rate for small .. (These approximations are not
used elsewhere in the article.) To see where
these approximations come from, we use the fol-
lowing facts. First, given any two random vari-
ables y, and y,, Covly,, y,] = Ely y,] - Ely,1E[y,].
A special case of this fact is Var[y,] = E[y?] - E[y,]*.
Next, note that 2z, ~ N[2(u, — 67/2), 467], so that
E[27] = Ele*] = e®:+>". Then

Var(z,]= E[2%]- E[2,]* = E[e*"']- E[e" |’
=gC+oDh_g2uih — g2k (golh_])
=~67h=Var[x,]

and  Cov([z;,2,]=E[2; 25]— E[2]E[2,]
=E[e™"™]|-Ele™]Ele™]

= o1 tHa 4016, _ H(HiHis)h
= e(uﬁ'“z)h (eﬁlozh _1)

=0, 0,h=Cov[x,,2,].

1. Unconditional expectations are used in the appendix. The same relations hold for conditional expectations.
2. Here is another example of Jensen’s inequality. Let 2 = e*, where & ~ N(m, v). Note that 2! = e and —x ~ N(=m, v).
Therefore, E[z'] = e*:* and E[2] E[z!] = e™ive™3" = ¢" # 1 = E[z 2], unless v = 0.
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APPENDIX C

Forecasting the Interest Rate

quation (13) will be used to produce fore-
casts of (7)) given the information available

at time ¢, E\[r(T)].
Note that the future interest rate »(7") is the
current interest rate »(?) plus all the changes in the
interest rate between ¢ and 7', which can be written!

U=t +(7i+h _72)+(72+2h _72+h)+"'+(7ﬁT _TT—h)
wh
=7 +2 (Thin —rcimiyn )-
=l

Therefore the expected future interest rate
equals the current interest rate plus the sum of
the expected changes in the interest rate:

t/h

(C.1) E|lrl=r +2 E\l%in =Ygl
=
T/h

=71+ 2%, 0, ~ B 7 M

i=1

Equation (13) is used in the second line in equa-
tion (C.1). Fixing ¢ and given r,, consider the fore-
cast of 7, as a function of the forecast horizon t =
T —t. To this end, let g(1) := E|[r,, ]. Then equa-
tion (C.1) can be written as

i+

T/h

(€2) g(W)=g(0)+ Y, {6, ~gl(i-Dhl}h,

=1
where g(0) = r,. Equation (C.2) can be expressed
as a first-order linear difference equation in g(1):

(C.3) g(t+h)—g(v)
h
=x,0,—-x,g(t), subjecttog(0)=7,.

The solution to (C.3) is
(C4) Elr.l=9(0)=A+Bl7,

where

T/h
(C5) AT=(1-B)®, and Bi=(1-x,h) .

Note that A7 and B: depend only on the forecast
horizon t and the parameters 6, and k. As T gets
larger, B:. gets closer to zero. BY. displays exponen-
tial decay. When £ is small, BT, = e ™. The approx-
imation is quite good for monthly data (h = 1/12)
given the estimated values for k, (as we will see).

Given equation (C.5), equation (C.4) can be
written as

(C.6) Elr..]=6,+B/(7-6,)
=0, +(1-%, )" (1,-8,).
An arbitrarily large forecast horizon implies
lim £,[7,,.1=6,,
T—>0
which confirms that 0, is the long-run mean. The

expected half-life of a given deviation from the
mean (7, - 0) is obtained by solving B: = 1/2 for 1:

”

C.7) Tzlog(z)( -x,h | log(2)
x, (log(l-x,n)) «x, °

Again, the approximation is accurate when 7 is
small. The half-life is inversely proportional to x,,
confirming the interpretation of k, as the speed of
mean reversion. To get a feel for the magnitudes,
note that k=7 corresponds to a half-life of about
5.2 weeks, k= 0.7 corresponds to a half-life of
about one year, and k= 0.07 corresponds to a
half-life of about ten years.

Forecast Revisions and Forecast Errors
In this section, forecast revisions and forecast
errors are used to compute the conditional and
unconditional variance of the interest rate.

As time passes and new information arrives,
the forecast of », will be revised from £ [r,] to
E, [r;]. The forecast revision is given by

(C8) Eplrrl-Elr]=Eylr, - Blr,.]
=(47"+B7"7.,)
~(47+Brn)
=B""c,e(t+h),

where T = 7' —t. The second equality in (C.8) fol-
lows from the solution for £ [, ] given in equa-
tion (C.4). The third equality follows from the
dynamics of 7 given in equation (13), replacing
7, with 7, + ¥ (8, —r)h + 6,e(t + k) and collect-
ing terms. (This latter simplification involves a
substantial amount of rearrangement—so much
that one probably cannot confirm it in one’s

head.) Using equation (C.8), the following three

1. To make the notation more compact for space considerations, subscripts will be used in place of parentheses to denote
arguments for time and maturity. In particular, 7, = 7(¢#) and so forth.
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properties of the forecast revision can all be
inferred from the properties of €(t + /). First, the
forecast revision is zero on average; second, it is
independent of previous forecast revisions; and,
third, its (conditional) variance is

E, [(B;-h o, e(i+ h)ﬂ =(B™" jzci h,

which is (B:’h ]2 times the conditional variance of
Yo = Vo

The forecast error is defined as the difference
between the actual value 7, and its conditional

expectation as of time ¢:
(C.9 e =71 .—Elr,.l

Here ¢ does not indicate when e} is known but
rather when the forecast was made; e} is not
known for certain until time ¢ + t. The forecast
error can be expressed in terms of the sum of
revisions in the forecasts:

e =1~ E/[n.]=(E, [0 ]-El%..D
+(Epon M= B 1D+
(B o[V = By on[142])
(B [0 =B [71 D

Since each of the forecast revisions is zero on
average, so is the forecast error:

E,[ef]=0.

(If the forecast error were not zero on average,
then one could make better forecasts; in other
words, if the forecast error were not zero on aver-
age, the conditional expectation must not have
been computed properly.) Since each successive
forecast revision is independent of those that pre-
cede it, the variance of the sum of the revisions
equals the sum of the variances of the revisions:

(C.10)

E, [(6; )ﬂ: Tz/h, E, [(Eﬁﬂ'h[yxﬂ]_EH(Z'—l)h[?/iHDZ]
i=1

T/h

=02 2 (B}f‘m )zh

=1
o [1-(-x, "] of1-e7)
T o (-ix ) 2k,

r

The expectation of the squared forecast error is
also known as the conditional variance:

Var,[1,,.]= B,[ (¢ )°]

The unconditional variance can be computed as

follows:
o’ o’

Tox.(1-tx, k) 2K,

Var([r]=limVar,([7,_.]

for small A.
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